
Deep Learning with R
Neural network fundamentals

Mikhail Dozmorov

Virginia Commonwealth University

2020-06-08

Deep Learning Prerequisites

For each machine- and deep learning algorithms, we need:

Input data - samples and their properties. E.g., images represented by
color pixels. Proper data representation is crucial

Examples of the expected output - expected sample annotations

Performance evaluation metrics - how well the algorithm's output
matches the expected output. Used as a feedback signal to adjust the
algorithm - the process of learning

2 / 32

How deep learning learns

Creates layer-by-layer increasingly complex representations of the input
data maximizing learning accuracy

Intermediate representations learned jointly, with the properties of each
layer being updated depending on the following and the previous layers

3 / 32

A generic Deep Learning
architecture is made up of a
combination of several layers of
"neurons"
The concept of a "neuron" was
proposed in the 1950s with the
well-known Rosenblatt
"perceptron", inspired by brain
function
The multilayer perceptron (MLP)
is a fully-connected feedforward
neural network containing at
least one hidden layer

The beginning of Deep Learning

4 / 32

Deep Learning winter and revival

Widespread belief that gradient descent would be unable to escape poor
local minima during optimization, preventing neural networks from
converging to a global acceptable solution

During 1980s, 1990s, deep neural networks were largely abandoned

In 2006, deep belief networks revived interest to deep learning

In 2012, Krizhevsky et al. presented a convolutional neural network that
signi�cantly improved image recognition accuracy

GPU technologies enabled further development

Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006

5 / 32

The Perceptron: Linear input-output relationships

Input: Take , , and setting a
If , the output is 1 otherwise 0
Output: calculated as 1

https://www.analyticsvidhya.com/blog/2017/05/neural-network-from-scratch-in-python-and-r/

http://neuralnetworksanddeeplearning.com/chap1.html

x1 = 0 x2 = 1 x3 = 1 threshold = 0

x1 + x2 + x3 > 0

6 / 32

 - the output
 - the linear combination of

inputs
 - a non-linear activation

function

The Perceptron: Adding weights to inputs

Weights give importance to an input. For example, you assign ,
 and to , and respectively. These weights assign

more importance to .
To compute the output, we will multiply input with respective weights
and compare with threshold value as

ŷ = g(∑
m

i=1 xiwi)

ŷ
∑

g

w1 = 2
w2 = 3 w3 = 4 x1 x2 x3

x3

w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 > threshold
7 / 32

 - bias term

The Perceptron: Adding bias

Bias adds �exibility to the perceptron by globally shifting the calculations
and allowing the weights to be more precise
Think about a linear function , where is the bias. Without
bias, the line will always go through the origin (0,0) and we get poorer �t
Input consists of multiple values and multiple weights , but only one
bias is added. For , the linear representation of input will look like

https://www.analyticsvidhya.com/blog/2017/05/neural-network-from-scratch-in-python-and-r/

ŷ = g(w0 +∑
m

i=1 xiwi)

w0

ŷ = g(w0 + XT W)

y = ax + b b

xi wi

i = 3
w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 + 1 ∗ b

8 / 32

Multi-layer neural network

Input - a layer with neurons each taking input measures
Processing information - each neuron maps input to output via nonlinear
transformations that include input data , weights , and biases

n

xi wi b

9 / 32

Layers

Deep learning models are formed by multiple layers

The multi-layer perceptron (MLP) with more than 2 hidden layers is
already a Deep Model

Most frequently used layers

Convolution Layer
Max/Average Pooling Layer
Dropout Layer
Batch Normalization Layer
Fully Connected (Af�ne) Layer
Relu, Tanh, Sigmoid Layer (Non-Linearity Layers)
Softmax, Cross-Entropy, SVM, Euclidean (Loss Layers)

10 / 32

Fitting the parameters using the training set

Parameters of the neural network (weights and biases) are �rst
randomly initialized

For a given layer, initialize weights using Gaussian random variables
with and
Better to use standard deviation
Uniform distribution, and its modi�cations, also used

Small random subsets, so-called batches, of input–target pairs of the
training data set are iteratively used to make small updates on model
parameters to minimize the loss function between the predicted values
and the observed targets

This minimization is performed by using the gradient of the loss function
computed using the backpropagation algorithm

μ = 0 σ = 1
1/√nneurons

11 / 32

Over�ow and under�ow

Need to represent in�nitely many real numbers with a �nite number of
�g patterns

The approximation error is always present and can accumulate across
many operations

Underflow occurs when numbers near zero are rounded to zero

Overflow occurs when numbers with large magnitude are approximated
as or ∞ −∞

12 / 32

Activation function

Activation function takes the sum of weighted inputs as an argument and
returns the output of the neuron

where index 0 correspond to the bias term (,).

a = f(
N

∑
i=0

wixi)

x0 = b w0 = 1

13 / 32

Activation functions

Adds nonlinearity to the network calculations, allows for �exibility to
capture complex nonlinear relationships
Softmax - applied over a vector of length as

Sigmoid -
Tahn - Hyperbolic tangent
ReLU - Recti�ed Linear Unit .

Other functions: binary step function, linear (i.e., identity) activation
function, exponential and scaled exponential linear unit, softplus, softsign

https://keras.io/activations/

https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-
use-them/

z = (z1, . . . , zK) ∈ RK K

σ(z)i = ezi

∑
K
j=1 e

zj

f(x) = 1
1+e−x

tanh(x) = 2 ∗ sigmoid(2x) − 1
f(x) = max(x, 0)

14 / 32

Activation functions overview

https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044 15 / 32

Learning rules

Optimization - update model parameters on the training data and check
its performance on a new validation data to �nd the most optimal
parameters for the best model performance

https://www.youtube.com/watch?v=5u4G23_OohI

https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-
variants/

16 / 32

Loss function

Loss function - (aka objective, or cost function) metric to assess the
predictive accuracy, the difference between true and predicted values.
Needs to be minimized (or, maximized, metric-dependent)

Regression loss functions - mean squared error (MSE)

Binary classi�cation loss functions - Binary Cross-Entropy

Multi-class classi�cation loss functions - Multi-class Cross Entropy Loss
 (- number of classes, - binary indicator if class

label is the correct classi�cation for observation , - predicted
probability observation is of class), Kullback-Leibler Divergence
Loss

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

MSE = ∑
n

i=1(Yi − Ŷi)
21

n

−(ylog(p) + (1 − y)log(1 − p))

−∑M

c=1 yo,clog(po,c) M y

c o p
o c

∑ ŷ ∗ log()
ŷ

y

17 / 32

Loss optimization

We want to �nd the network weights that achieve the lowest loss

where

W ∗ = arg min
W

n

∑
i=1

L(f(x(i); W), y(i))
1

n

W = {W (0), W (1), . . . }

18 / 32

Gradient descent

An optimization technique - �nds a combination of weights for best
model performance

Full batch gradient descent uses all the training data to update the
weights

Stochastic gradient descent uses parts of the training data

Gradient descent requires calculation of gradient by differentiation of
cost function. We can either use �rst-order differentiation or second-
order differentiation

https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-
variants/

Richards, Blake A., Timothy P. Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia Christensen,
Claudia Clopath, et al. “A Deep Learning Framework for Neuroscience.” Nature Neuroscience 2019 - Box 1,
Learning and the credit assignment problem 19 / 32

Gradient descent algorithm

Initialize weights randomly

Loop until convergence

Compute gradient,

Update weights,

Return weights

where is a learning rate. Right selection is critical - too small may lead to
local minima, too large may miss minima entirely. Adaptive
implementations exist

∼ N(0, σ2)

∂J(W)

∂W

W ← W − η
∂J(W)

∂W

η

20 / 32

Stochastic Gradient Descent
(SGD)
Stochastic Gradient Descent
with momentum (Very popular)
Nesterov's accelerated gradient
(NAG)
Adaptive gradient (AdaGrad)
Adam (Very good because you
need to take less care about
learning rate)
RMSprop

Gradient descent algorithms

https://leonardoaraujosantos.gitbooks.io/arti�cial-

inteligence/model_optimization.html

21 / 32

Forward and backward propagation

Forward propagation computes the output by passing the input data
through the network

The estimated output is compared with the expected output - the error
(loss function) is calculated

Backpropagation (the chain rule) propagates the loss back through the
network and updates the weights to minimize the loss. Uses chain rule to
recursively calculate gradients backward from the output

Each round of forward- and backpropagation is known as one training
iteration or epoch

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams. “Learning Representations by Back-

Propagating Errors,” 1986

22 / 32

Forward propagation

Assuming sigmoid activation function , at Layer L1, we have:σ(f)

a1
0 = σ([w1

00 ⋅ x0 + b1
00] + [w1

01 ⋅ x1 + b1
01])

a1
1 = σ([w1

10 ⋅ x0 + b1
10] + [w1

11 ⋅ x1 + b1
11])

23 / 32

Forward propagation

At Layer L2, we have:

https://www.analyticsvidhya.com/blog/2020/04/comprehensive-popular-deep-learning-interview-questions-

answers/

ŷ = σ([w2
00 ⋅ a1

0 + b2
00] + [w2

01 ⋅ a1
1 + b2

01])

24 / 32

Backpropagation

Back-propagation - A common method to train neural networks by
updating its parameters (i.e., weights) by using the derivative of the
network’s performance with respect to the parameters. A technique to
calculate gradient through the chain of functions

Review https://ml-cheatsheet.readthedocs.io/en/latest/backpropagation.html

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams. “Learning Representations by Back-
Propagating Errors”, 1986, 4.

= ∗ ∗
∂J(W)

∂w1

∂J(W)

∂ŷ

∂ŷ

∂z1

∂z1

∂w1

25 / 32

Backpropagation

https://www.analyticsvidhya.com/blog/2020/04/comprehensive-popular-deep-learning-interview-questions-

answers/

26 / 32

Backpropagation

https://www.analyticsvidhya.com/blog/2020/04/comprehensive-popular-deep-learning-interview-questions-

answers/

27 / 32

Backpropagation Explained

A series of 10-15 min videos by deeplizard

Part 1 - The Intuition
Part 2 - The Mathematical Notation
Part 3 - Mathematical Observations and the chain rule
Part 4 - Calculating The Gradient, derivative of the loss function with
respect to the weights
Part 5 - What Puts The "Back" In Backprop?

Analytics Vidhya tutorial: Step-by-step forward and backpropagation,
implemented in R and Python:
https://www.analyticsvidhya.com/blog/2017/05/neural-network-from-
scratch-in-python-and-r/

28 / 32

Vanishing gradient

Typical deep NNs suffer from the problem of vanishing or exploding
gradients

The gradient descent tries to minimize the error by taking small steps
towards the minimum value. These steps are used to update the
weights and biases in a neural network
On the course of backpropagation, the steps may become too small,
resulting in negligible updates to weights and bias terms. Thus, a
network will be trained with nearly unchanging weights. This is the
vanishing gradient problem
Weights of early layers (latest to be updated) suffer the most

https://en.wikipedia.org/wiki/Vanishing_gradient_problem

Vanishing & Exploding Gradient Explained | A Problem Resulting From Backpropagation

https://www.analyticsvidhya.com/blog/2020/04/comprehensive-popular-deep-learning-interview-questions-
answers/

29 / 32

Exploding gradient

Typical deep NNs suffer from the problem of vanishing or exploding
gradients

The gradient descent tries to minimize the error by taking small steps
towards the minimum value. These steps are used to update the
weights and biases in a neural network
The steps may become too large, resulting in large updates to weights
and bias terms and potential numerical over�ow. This is the exploding
gradient problem
Various solutions exist, typically by propagating a feedback signal
from previous layers (residual connections)

https://en.wikipedia.org/wiki/Vanishing_gradient_problem

Vanishing & Exploding Gradient Explained | A Problem Resulting From Backpropagation

https://www.analyticsvidhya.com/blog/2020/04/comprehensive-popular-deep-learning-interview-questions-
answers/

30 / 32

Neural Network summary

Angermueller et al., “Deep Learning for Computational Biology.” 31 / 32

The Neural Network Zoo

Review the complete infographics at https://www.asimovinstitute.org/neural-network-zoo/ 32 / 32

