
Deep Learning with R
Recurrent Neural Networks, LSTMs, 1D CNNs

Mikhail Dozmorov

Virginia Commonwealth University

2020-06-12

Recurrent neural networks (RNN)

Fully connected networks and CNNs do not have memory - each input is
processed independently

While convolutional neural networks can ef�ciently process spatial
information, recurrent neural networks are designed to better handle
sequential information

RNNs apply the same operation to each sequence element. The
operation takes as input the memory of the previous sequence element
and the new input. It updates the memory and optionally emits an
output, which is either passed on to subsequent layers or is directly used
as model predictions

2 / 23

RNN applications

Recurrent Neural Networks, or RNNs, were designed to work with
sequence prediction problems, natural language processing

One-to-Many: An observation as input mapped to a sequence with
multiple steps as an output
Many-to-One: A sequence of multiple steps as input mapped to class
or quantity prediction
Many-to-Many: A sequence of multiple steps as input mapped to a
sequence with multiple steps as output

https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/

https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--
VmlldzoxMTY5MjI

3 / 23

Recurrent neural networks (RNN)

https://leonardoaraujosantos.gitbooks.io/arti�cial-inteligence/recurrent_neural_networks.html

4 / 23

Recurrent neural networks (RNN)

RNNs are speci�cally designed to model space-temporal structures
because they consider information from multiple previous layers. Most
frequently used in time series, text, audio data analysis

In the RNN model, the current hidden layer is a nonlinear function of
both the previous layer(s) and the current input (x). The model has
memory since it has a bias based on the "past"

5 / 23

Recurrent neural networks (RNN)

Scheme of recurrent neural networks (RNNs): The left part of the image (in
colors) shows the whole network structure; whereas, the recursive structure
of the network is shown in the right, where represents inputs, are the
hidden layers, are the outputs, are the target variables, and

 is the loss function.

x h
o = V h(t) + b y

L

6 / 23

RNN mathematical de�nition

The predicted output at time , , is a nonlinear function of and
bias , where is a weight matrix

The current hidden layer is a nonlinear function of the previous layer
 of the current input and of bias,

 and are weight matrices to be estimated. If represents a
sequence-like dataset, refers to the value of at time

t ŷ
(t)

h(t)

b1 V

ŷ (t) = g(V h(t) + b1)

h(t)

h(t−1) (x) b0

h(t) = f(Wh(t−1) + Ux(t) + b0) (a)

W U x
x(t) x t

7 / 23

Word-level RNN language model

https://d2l.ai/chapter_recurrent-neural-networks/rnn.html 8 / 23

Backpropagation through time

Backpropagation through time requires to expand the recurrent neural
network one timestep at a time to obtain the dependencies between
model variables and parameters
Then, based on the chain rule, we apply backpropagation to compute
and store gradients
Since sequences can be rather long, the dependency can be rather
lengthy

A number of methods have been proposed to address this. One of the
earliest is Long Short Term Memory (LSTM) [Hochreiter & Schmidhuber,
1997]. Gated Recurrent Unit (GRU) [Cho et al., 2014] is a slightly more
streamlined variant that often offers comparable performance and is
signi�cantly faster to compute.

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html

9 / 23

RNN improvements

Sequence elements are not created equal - some may be more
important than the other. E.g., introductory words may be highly
predictive of a future story. Need memory cell to store such information

Some elements may be not important at all, e.g., HTML formatting tags
around the actual text. Need skipping mechanism to forget such
elements

Some parts of the sequence may be disjoint, e.g., book chapters. Need
reset mechanism to refresh internal state representations

10 / 23

Gated Recurrent Units (GRU)

Gated recurrent neural networks are better at capturing dependencies
for time series with large timestep distances

Reset gates help capture short-term dependencies in time series

Update gates help capture long-term dependencies in time series

GRUs contain basic RNNs as their extreme case whenever the reset gate
is switched on. They can ignore sequences as needed

https://d2l.ai/chapter_recurrent-modern/gru.html

11 / 23

Gated Recurrent Units (GRU)

https://d2l.ai/chapter_recurrent-modern/gru.html 12 / 23

Long Short-Term Memory (LSTM)

One major issue with RNN is that although it should theoretically be able
to retain at time t information about inputs seen many timesteps before,
in practice, such long-term dependencies are impossible to learn due to
vanishing gradient problem

LSTM allows past information to be reinjected at a later time, thus
�ghting the vanishing-gradient problem

LSTM’s design is slightly more complex than GRU but predates GRU by
almost two decades

13 / 23

Long Short-Term Memory (LSTM)

LSTM neuron has four mechanisms: 1) Forget, 2) Store, 3) Update, 4) Output

14 / 23

Long Short-Term Memory (LSTM)

LSTMs have three types of gates: input gates, forget gates, and output
gates which control the �ow of information

The hidden layer output of LSTM includes hidden states and memory
cells. Only hidden states are passed into the output layer. Memory cells
are entirely internal

LSTMs can cope with vanishing and exploding gradients

https://d2l.ai/chapter_recurrent-modern/lstm.html

15 / 23

Deep Recurrent Neural Networks

A single unidirectional hidden layer in LSTMs and GRUs may be
insuf�cient to capture the full complexity of sequences. Several
strategies to increase the �exibility

Add nonlinearity to the gating mechanisms
Increase the number of units in the hidden layer
Stack multiple layers on top of each other. The intermediate layers
should return the full sequence of outputs (hidden state information),
not the outputs at the last time step. Highly computationally intensive

16 / 23

Bidirectional Recurrent Neural Networks

Bidirectional RNN looks at its input sequence both ways, obtaining
potentially richer representations and capturing patterns that may have
been missed by the chronological-order version alone

In bidirectional recurrent neural networks, the hidden state for each
timestep is simultaneously determined by the data prior to and after the
current timestep

Bidirectional RNNs are exceedingly slow due to they require both a
forward and a backward pass and that the backward pass is dependent
on the outcomes of the forward pass. Hence, gradients will have a very
long dependency chain

17 / 23

Bidirectional Recurrent Neural Networks

https://d2l.ai/chapter_recurrent-modern/bi-rnn.html 18 / 23

Over�tting in RNNs

Dropout - the same dropout mask (the same pattern of dropped units)
should be applied at every timestep, instead of a dropout mask that
varies randomly from timestep to timestep

Every recurrent layer in Keras has two dropout-related arguments:
dropout, a �oat specifying the dropout rate for input units of the layer,
and recurrent_dropout, specifying the dropout rate of the recurrent
units

19 / 23

CNNs for sequence processing

CNNs extract features from local input patches, which can be time
periods, sequence chunks

Not sensitive to time order

Much faster than RNNs, but inferior performance

Use a 1D convnet as a preprocessing step before an RNN

Used for machine translation (sequence-to-sequence), document
classi�cation, spelling correction

20 / 23

1D convolution

Use 1D convolutions, extracting local 1D patches (sub-sequences) from
sequences
The convnet will turn the long input sequence into much shorter
(downsampled) sequences of higher-level features

21 / 23

1D pooling

CNNs for sequence processing have a similar structure like regular
convnets - they consist of stacks of layerconv_1ds and layer
max_pooling_1ds, ending in a global pooling operation or �attening
operation

1D pooling extracts 1D patches (subsequences) from the input and
outputs the maximum value (max pooling) or average value (average
pooling)

For 2D convnets, we used kernel size equal to 3, so a convolution
window contains 9 feature vectors. For 1D, we use one dimension, so our
window size (kernel) can be 7 or 9

3 × 3

22 / 23

RNNs vs. 1D convnets

If global order matters in your sequence data, then it’s preferable to use a
recurrent network. This is typically the case for time series, where the
recent past is likely to be more informative than the distant past

If global ordering isn’t fundamentally meaningful, then 1D convnets will
turn out to work at least as well and are cheaper. This is often the case for
text data, where a keyword found at the beginning of a sentence is just
as meaningful as a keyword found at the end

23 / 23

